Фундаменты промышленных зданий

Конструкция фундаментов промышленных зданий

По способу возведения фундаменты промышленных зданий делят на монолитные и сборные.

Под колонны каркасного здания устраивают, как правило, столбчатые фундаменты с подколонниками стаканного типа, а стены опирают на фундаментные балки. Ленточные и сплошные фундаменты предусматривают редко, как правило, на слабых, просадочных грунтах и при больших ударных нагрузках на грунт технологического оборудования.

Унифицированные монолитные железобетонные фундаменты имеют ступенчатую форму с подколонником стаканного типа для заделки колонн.
Сборные фундаменты экономичнее монолитных, но на них больше расходуется стали. Более легкими и экономичными по расходу стали, являются сборные фундаменты ребристой или пустотной конструкции.

При близком расположении уровня грунтовых вод (УГВ) и при слабых грунтах устраивают свайные фундаменты. Наиболее распространены железобетонные сваи круглого и квадратного сечений. По верху сваи связывают монолитным или сборным железобетонным ростверком, который служит одновременно подколонником.
Подколонник устанавливают на плиту по слою цементно-песчаного раствора. При действии на фундамент изгибающего момента соединение подколонника с плитой усиливают сваркой закладных элементов, а места сварки заделывают бетоном.
Ступени плиты всех фундаментов имеют единую унифицированную высоту 300 мм или 450 мм.
В верхней части подколонника устроен стакан для установки в него колонны. Дно стакана располагают на 50 мм ниже проектной отметки низа колонны для того, чтобы компенсировать подливкой раствора неточности в размерах и заложении фундаментов.
Колонны с фундаментом соединяют различными способами. В основном с помощью бетона. Для обеспечения жесткого закрепления колонны в стакане фундамента на боковых поверхностях железобетонной колонны устраивают горизонтальные бороздки. Зазор между гранями колонны и стенками стакана поверху составляет 75 мм, а по низу стакана 50 мм (рис.2).
Обрез фундамента под железобетонные колонны располагают на отметке -0.15 м, под стальные колонны – на отметках -0.7 м или -1.0 м.
Фундаменты под смежные колонны в температурных швах делаются общими, независимо от числа колонн в узле. Для каждой сборной железобетонной колонны в этом случае устраивают отдельный стакан.

Монолитные фундаменты железобетонных
колонн в местах устройства деформационных швов
В фундаментах под стальные колонны подколонник делают сплошным (без стакана) с анкерными болтами.

а) колонны постоянного сечения;
б) колонны двухветвевые (сквозного сечения)
Стены каркасных зданий опирают на фундаментные балки, укладываемые между подколонниками фундаментов на бетонные столбики необходимой высоты, бетонируемые на уступах фундаментов. Фундаментные балки имеют тавровое или трапецеидальное поперечное сечение. Номинальная длина их составляет 6 и 12 м. Конструктивная длина фундаментных балок выбирается в зависимости от ширины подколонника и местоположения балок. Верхняя грань балок располагается на 30 мм ниже уровня чистого пола.

Сечения фундаментных балок
Фундаментные балки устанавливают на подливку из цементно-песчаного раствора толщиной 20 мм. Этим раствором заполняют зазоры между торцами балок и стенками подколонников. По балкам для гидроизоляции стен укладывают 1-2 слоя рулонного водонепроницаемого материала на мастике. Во избежание деформации балок вследствие пучения грунтов снизу и с боков балок предусматривают подсыпку из шлака, песка или кирпичного щебня.

Устройство фундаментных балок промышленных зданий

Источник: adcitymag.ru

ФУНДАМЕНТЫ ПРОМЫШЛЕННЫХ ЗДАНИЙ

6.1. Фундаменты сборных железобетонных колонн

Фундаменты состоят из подколонника и одно-, двух- или трехсту­пенчатой плитной части. Фундаменты спроектированы по высоте 1,5 м и в пределах 1,8–4,2 м с интервалом 0,6 м. Обрез фундаментов под железобе­тонные колонны располагается, чаще всего, для одно­этажных зданий на от­метке минус 0,15 м. Фундаменты выполнены с уступами, высота которых 0,3 и 0,45 м. Все размеры их в плане унифицированы и кратны модулю 0,3 м.

Площадь подколонников принята в шести вариантах начиная от 0,9 0,9 м (ак×bк). В последующих вариантах размер подколонника в направ­лении шага колонн bк установлен 1,2 м, а размер в направлении пролета между колоннами ак составляет 1,2; 1,5; 1,8; 2,1 и 2,7 м.

Размеры конкретного фундамента выбира­ют в зависимости от на­грузки, передаваемой колонной, характеристик грунта и решений конст­руктивной части здания ниже отметки 0.000. Зазор между гранями колонн и стенкой стакана принят по верху стакана 75 мм и по низу 50 мм, а между низом колонны и дном стакана 50 мм. Минимальная толщина стенки по верху составляет 175 мм. Стакан для ветвей двухветвевой колонны устраивают об­щим. Класс бетона фундаментов В10–В12 (М150 или М200). После уста­новки колонн стаканы заливают бетоном класса В20 или В25 на мелком гравии.

Под железобетонные фундаменты обычно делают подготовку тол­щиной 100 мм из щебня с проливкой цементным раствором или из бетона класса В7,5. При прочных слабофильтрующих грунтах устройство подго­товки не требуется. Фундамент под спаренные колонны в температурных швах устраивают общим даже в том случае, если колонны по смежным разбивочным осям спроектированы стальными и железобетонными.

Фундаментные балки под наружные стены рассчитаны на нагрузку от сплошных стен и стен с оконными или дверными проемами, располо­женными над серединой фундаментной балки. Для опирания фундамент­ных балок на фундаменты колонн рекомендуется устройство приливов (бетонных столбиков), ширину которых следует принимать не менее мак­симальной ширины балки, а обрез на от­метке минус 0,45 или 0,6 м – в зависимо­сти от ее высоты.

Рис. 5. Фундаменты сборных железобетонных колонн:

1 – подколонник стаканного типа; 2 – железобетонная колонна;

3 – плитная часть; 4 – подошва фундамента

Фундаменты стальных колонн

Фундаменты под стальные колонны принима­ют по типу фундамен­тов под железобетонные колонны. При этом подколонник устраивается сплошным (без стакана) и имеет анкерные болты, заделанные в бетон. База стальной колонны крепится к фундаменту гайками, навинчивающимися на верхние выступающие из бетона концы анкерных болтов.

Читайте также:  Нужна ли опалубка фундамента

Рис. 6. Монолитные железобетонные фундаменты под стальные колонны:

1 – анкерный болт; 2 – анкерная плита; 3 – опорная плита;

4 – цементная подливка; 5 – железобетонный фундамент

Для заглубления развитых баз стальных колонн (с траверсами) обрезы фундаментов располагают на отметке минус 0,7 или минус 1,0 м. Для стальных колонн, у которых траверсы отсутствуют, отметку верха подколонника на­значают порядка минус 0,25 м. Сечение подколонников под базы сталь­ных ко­лонн выбирают так, чтобы расстояние от оси анкерных болтов до грани подколонника было не менее 150 мм.

Свайные фундаменты

Конструкции монолитных фундаментов железобетонных и стальных колонн могут при­меняться совместно со сваями. При устройстве фунда­ментов использование свай целесообразно в тех случаях, когда не­посред­ственно под сооружением залегают сла­бые грунты, не способные выдер­жать нагрузку от сооружения, или когда применение свай позволяет полу­чить экономически наиболее выгодное решение.

В отечественной практике известно более 150 видов свай, которые классифицируются по материалам (железобетонные, бетонные, дере­вян­ные и т. д.), конструкции (цельные, состав­ные, квадратные, круглые, с уширением и без него и т. д.), виду армирования, способу из­готовления и погружения (сборные, монолит­ные, забивные, завинчиваемые, буронабив­ные, виброштампованные и т. д.), характеру работы в грунте (сваи-стойки, висячие сваи).

Рис. 7. Свайные фундаменты:

1 – железобетонная колонна; 2 – подколонник;

3 – плитная часть фундамента; 4 – свая

Сваи железобетонные забивные цельные сплошного квадратного се­чения рекоменду­ется приме­нять в любых сжимаемых грунтах.

Сваи забивают до проектных от­меток. В том случае, если по каким-либо при­чинам отметки свай разные, осуществляют срубку свай ручными или механическими ин­струментами до заданных проектных отметок.

ЖЕЛЕЗОБЕТОННЫЕ КОЛОННЫ

Общие сведения о колоннах

По положению в здании колонны подразделяются на крайние и средние. К крайним колоннам с наружной стороны примыкают стеновые ограждения. Крайние колонны, в свою очередь, подразделяются на основ­ные, воспринимающие нагрузки от стен, кранов и конструкций покрытия, и фахверковые, служащие только для крепления стен.

Закладные элементы, заанкеренные в бетон или приваренные для фиксации положения к рабочей арматуре, имеются во всех колоннах в местах опирания стропильных конструкций и подкрановых балок, в край­них колоннах – на уровне швов стеновых панелей, в связевых колоннах – в местах примыкания продольных связей. Закладные стальные трубки диа­метром 50–70 мм образуют отверстия, используемые для строповки при распалубке и монтаже.

Закладные элементы в местах опирания подкрановых балок и стро­пильных конструкций состоят из стального листа с пропущенными сквозь него анкерными болтами. Бетон под ними усиливается косвенными арми­рованными сетками. Для установки железобетонных подстропильных ферм оголовки колонн снижаются на 0,6 мм и выполняются без анкерных болтов. Стык осуществляется потолочным сварным швом. При стальных фермах и подкрановых балках опорные закладные элементы несколько видоизменяются – лист усиливается плитой, рассчитанной на сосредоточенное давление опорных ребер, и меняется расстановка анкерных болтов. Стальные подстропильные фермы крепятся к стальным надопорным стойкам.

Длину колонн подбирают с учетом высоты цеха и глубины заделки фундамента.

В зданиях с подстропильными конструкциями длину колонн прини­мают на 700 мм меньше.

Источник: lektsia.com

Фундаменты гражданских и промышленных зданий

Фундаменты гражданских и промышленных зданий.

Фундаменты – важный конструктивный элемент здания, воспринимающий нагрузку от его надземных частей и передающий ее на основание. Фундамент должен обладать: достаточной прочностью, устойчивостью, долговечностью, индустриальностью и экономичностью.

1) по конструктивным схемам: на ленточные, располагаемые непрерывной лентой под стенами здания; столбчатые (отдельно стоящие) – в виде отдельных опор под несущими конструкциями; плитные (сплошные) – в форме массивной плиты под зданием; свайные – в виде железобетонных или других стержней, помещенных в грунт; комбинированные (сваи+плитные);

2) по виду применяемого материала: на фундаменты из природного камня, бутобетона, бетона, железобетонные;

3) по характеру работы под нагрузкой: на жесткие, работающие только на сжатие, и гибкие, работающие на сжатие с изгибом;

4) по типу применяемых конструкций: на сборные, монолитные и из мелкоразмерных элементов;

по глубине заложения: на мелкого заложения (до 5 м) и глубокого заложения (свыше 5 м). РИС

Как правило, ленточные, столбчатые и плитные фундаменты являются фундаментами мелкого заложения; свайные – глубокого заложения.

Ленточные фундаменты могут быть выполнены: из бутового камня, бутобетона, бетона и железобетона. РИС. Ленточные фундаменты, как правило, применяются для бескаркасных зданий.

Железобетонные ленточные фундаменты могут быть монолитными и сборными. Сборные ленточные фундаменты состоят из фундаментных блоков и блоков-подушек. РИС. Если по расчету ширина подошвы фундамента не превышает ширину бетонного блока, то блоки-подушки не применяются.

Каркасные здания, как правило, возводят на столбчатых (отдельно стоящих) фундаментах. При небольших нагрузках на фундамент под стены малоэтажных зданий без подвалов их тоже выполняют столбчатыми из соображений удешевления. РИС.

Плитные фундаменты применяются при значительных нагрузках или при слабых и неоднородных грунтах основания. Также их рекомендуют применять в сейсмоопасных районах. Плитные фундаменты обеспечивают равномерную осадку здания, однако они имеют высокую стоимость.

Свайные фундаменты используют при строительстве на слабых сжимаемых грунтах, а также в тех случаях, когда достижение прочного естественного основания экономически нецелесообразно из-за большой глубины его заложения. РИС.

Как правило, свайные фундаменты состоят из свайного поля и ростверков. Однако существуют свайные фундаменты без ростверка. Задача свайного поля – обеспечить несущую способность фундамента по грунту. Задача ростверка – передать нагрузку от вышележащих конструкций на группу свай.

Читайте также:  Как сделать фундамент для пристройки к дому

Ростверки по форме бывают отдельно стоящими, ленточными и плитными. По типу изготовления ростверки бывают монолитными и сборными.

По виду материала сваи бывают: железобетонные, бетонные, деревянные и металлические. По способу возведения сваи бывают забивные и набивные.

Забивные сваи изготавливают на поверхности и погружают в грунт одним из 3-х способов: забивают (копровой или другой установкой), задавливают (гидравлическими домкратами или рычажно-полиспастной системой), вибропогружают (пробуривают скважину малого диаметра и применяют вибропогружающую установку).

Набивные сваи изготавливают из монолитного бетона непосредственно в грунте основания. Как правило, для этого пробуривают скважину большого диаметра, а затем укладывают в нее бетон (буронабивные сваи).

По характеру работы под нагрузкой свайные фундаменты делят: на сваи-стойки и висячие сваи.

Сваи стойки передают нагрузку от здания на массив плотных грунтов находящихся под наконечником сваи. Наконечник сваи, при этом, должен быть заглублен в несущий массив грунта не менее чем на 500 мм.

Висячие сваи обеспечивают несущую способность основания в основном за счет сил трения по боковым поверхностям сваи.

В подавляющем большинстве случаев свайные фундаменты являются фундаментами на висячих сваях.

Комбинированные фундаменты – это комбинация свайного и плитного фундамента. В данном случае несущую способность по грунту основания обеспечивает не только свайное поле, но и плитный ростверк, объединяющий сваи.

Понятие о деформационном шве. Одним из важных, но незаметных элементов многих зданий являются деформационные швы. Их отсутствие в необходимых местах является распространенной строительной ошибкой, приводящей к проблемам с эксплуатацией зданий и сооружений и даже к крупным авариям. Деформационный шов применяется в случае если требуется обеспечить независимую осадку 2-х смежных участков здания. Эта необходимость возникает в 3-х случаях:

1. на фундаменты смежных участков действуют разные по интенсивности нагрузки (разная этажность здания, разная грузоподъемность кранового оборудования и т. п.);

2. под зданием имеется основание с разнородной структурой (линзы);

3. к долго эксплуатирующемуся зданию вплотную пристраивается новое.

Деформационный шов обеспечивает целостность 2-х участков здания с точки зрения их эксплуатации, но делает так, что вертикальные нагрузки от 1-го участка здания никаким образом не передавались на другой.

Понятие о гидроизоляции фундаментов. Фундаменты зданий эксплуатируются во влажной среде – грунтах основания. Поднимающаяся по каппилярам конструкций влага приводит к деструктивным процессам элементов зданий. Во избежание этих процессов, фундамент гидроизолируют. Одним из элементов гидроизоляции является отмостка. Отмостка – неширокая асфальтовая или бетонная полоса, укладываемая с уклоном на грунт вдоль периметра наружных стен. Под полосой также желательно устраивать глиняный замок. Задача отмостки – отвести атмосферные осадки от стен и фундаментов здания. Одной отмостки для защиты нижней части здания от влаги недостаточно. В бесподвальных здания устраивают горизонтальную гидроизоляцию в уровне цоколя стен на расстоянии 200…300 мм от уровня отмостки в наружных стенах, и в уровне пола первого этажа во внутренних стенах. РИС. В зданиях с подвалом этого недостаточно. В них устраивают еще один слой горизонтальной гидроизоляции в уровне пола подвала, укладывая по верху фундамента слой плотного цементно-песчаного раствора. Также в них устраивают вертикальную гидроизоляцию путем окраски гидрофобизирующими составами (битумом) поверхностей соприкасающихся с грунтом стен подвала.

Источник: pandia.ru

Расчет фундамента промышленного здания

Разработка проекта фундамента для каркасного одноэтажного промышленного здания. Сбор нагрузок, действующих на фундаменты. Подбор колонн и назначение размеров подколонника. Устройство и расчет свайных фундаментов. Подбор молота для погружения сваи.

Рубрика Строительство и архитектура
Вид курсовая работа
Язык русский
Дата добавления 09.04.2013
Размер файла 1,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

В настоящее время проблема грамотного проектирования, расчета и обустройства фундаментов является очень актуальной, так как правильно выполненные вышеперечисленные работы являются залогом долговечной и надежной работы всей конструкции. Напротив ошибки в расчете и нарушение технологии возведения, могут привести к негативным последствиям, таким как, например, неравномерная осадка, что в свою очередь может спровоцировать образование трещин и преждевременное разрушение здания.

Целью выполнения курсового проекта является приобретение теоретических и практических навыков проектирования фундаментов и знакомство с действующими строительными нормами и правилами, для дальнейшего использования этих знаний при разработке и строительстве реальных объектов.

Нашей задачей является в соответствии с заданием подобрать, спроектировать и рассчитать наиболее подходящий фундамент для указанного варианта каркасного промышленного здания, определить материал для этого фундамента и его размеры.

В данном курсовом проекте исследуется промышленное здание с полным железобетонным каркасом.

Рассматриваются два варианта устройства фундамента: фундамент мелкого заложения и свайный фундамент.

Курсовой проект состоит из 1 листа чертежей выполненных на листе формата A1 и 54 листов пояснительной записки.

Курсовой проект содержит в себе 19 иллюстраций и 8 таблиц с расчетами. Последовательность проектирования оснований и фундаментов: анализ проектируемого здания, оценка результатов инженерно-геологических изысканий, выбор типа основания и фундамента, начиная с привязки здания к строительной площадке.

Свердловская область, г. Екатеринбург (Свердловск).

3. Характеристика географического положения площадки строительства, ее климатических и сейсмических условий

Место строительства – г. Екатеринбург. Судя по разрезам рельеф местности – спокойный, площадка строительства – ровная. Нормативная глубина промерзания – 2.1 м. Абсолютная отметка грунтовых вод в пределах выработки – 25 м. Абсолютная отметка пола первого этажа – 28.50 м.

Климатические параметры холодного периода года в Екатеринбург:

Читайте также:  Фундамент плита своими руками

Абсолютно min t°С воздуха = -47.

Средняя суточная амплитуда t воздуха наиболее холодного

Средняя месячная относительная влажность воздуха наиболее

холодного месяца = 73%.

Количество осадков за ноябрь-март = 114.

Преобладающее направление ветра за декабрь-февраль = З.

Max скорость ветра по румбам за январь = 5.

Средняя скорость ветра за период со средней суточной t° воздуха ? 8°С = 3.7 .

Климатические параметры теплого периода года в Екатеринбург:

Барометрическое давление = 980.

Средняя суточная амплитуда t° воздуха наиболее теплого

Средняя месячная относительная влажность воздуха наиболее

теплого месяца = 68%.

Количество осадков за апрель-август = 383.

Суточныйmax осадков = 94.

Преобладающее направление ветра за июнь-август = З.

Зона влажности = сухая.

Месячная t° воздуха в январе = от – 15.5

Месячная t° воздуха в июле = +17.2

Рельеф площадки строительства спокойный. В пределах площадки для анализа инженерно-геологических условий разработано 5 скважин глубиной 10 м. Расстояние между скважинами 55 и 55.5 м.

С поверхности грунта залегают песок пылеватый, подстилает его так же пылеватый песок, а третьим слоем являются пески средней крупности.

Мощность пластов: 1 – от 0.6 до 4.0 м,

2 – от 3.0 до 5.3 м,

Абсолютная отметка уровня грунтовых вод – 25 м.

Физико-механические свойства грунтов представлены в таблице 1:

Таблица 3.1. – Физико-механические свойства грунтов.

Удельный вес частиц грунта гs

Удельный вес грунта г

Коэффициент пористости е

Влажность на границе раскатывания щР

Влажность на границе текучести щL

Коэффициент фильтрации кф

Угол внутреннего трения ц

Физико-механические свойства грунтов приведены в таблице 3.2.

Таблица 3.2. – Характеристика физико-механических свойств грунтов.

Мощность слоя, м

Плотность грунта с, т/м 3

Плотность частиц грунта сs, т/м 3

Природная влажность щ, доли ед.

Влажность на пределе текучести щL, доли ед.

Влажность на пределе раскатывания щР, доли ед.

Коэффициент фильтрации kф,м/сут.

Коэффициент пористости е

Плотность скелета грунта сd, т/м 3

Число пластичности JP, %

Показатель текучести JL, доли ед.

Коэффициент водонасыщения Sr, доли ед.

Модуль деформации Е, кПа

Песок средней крупности

Для расчета основания

по несущей способности

Угол внутреннего трения цI, град

Угол внутреннего трения цII, град

Песок средней крупности

Грунт отобран из скважин 1, 2 и 3, глубина скважин 10 м.

Песок пылеватый, так как е = 0,6 и находится в пределах 0,6 ? е ? 0,8, то песок пылеватый средней плотности, так как модуль деформации Ео = 8 МПа (5,0 МПа ? Ео ? 200,0 МПа), среднесжимаемый. По насыщению песка водой: коэффициент водонасыщения Sr = 0.307-малой степени водонасыщения (0 ? Sr ? 0.5).

Вывод: рассматриваемый грунт, песок пылеватый: средней плотности, среднесжимаемый, слабо насыщенный водой. Может служить естественным основанием.

Песок пылеватый, так как е = 0,65 и находится в пределах 0,6 ? е ? 0,8, то песок пылеватый средней плотности, так как модуль деформации Ео = 10 МПа (5,0 МПа ? Ео? 200,0 МПа), среднесжимаемый. По насыщению песка водой: коэффициент водонасыщения Sr = 1 – насыщенный водой (0.8 ? Sr ? 1.0).

Вывод: рассматриваемый грунт, песок пылеватый: средней плотности, среднесжимаемый, насыщенный водой. Может служить естественным основанием.

Песок средней крупности, так как е = 0,6 и находится в пределах 0,55 ? е ? 0,7, то песок средней плотности, так как модуль деформации Ео = 25 МПа (5,0 МПа ? Ео ? 200,0 МПа), среднесжимаемый. По насыщению песка водой: коэффициент водонасыщения Sr = 1,0-насыщенный водой (0,8 ? Sr ? 1,0).

Вывод: рассматриваемый грунт, песок средней крупности: средней плотности, среднесжимаемый, насыщенный водой.Может служить естественным основанием.

4.Анализ проектируемого здания

Ш Объект – одноэтажное промышленное здание;

Ш Размеры в плане 72 Ч180 м.

Ш Высота до низа стропильной конструкции 12,6 м.

Ш Шаг колонн: 6 м.

Ш Конструктивная схема здания – здание каркасное с железобетонным каркасом.

Ш Способы передачи нагрузок на основание: от колонн на железобетонные отдельные фундаменты, а от них на грунтовые основания.

Ш Фундаменты внецентренно нагружены, т.к. на них от колонн передается, кроме вертикальных нагрузок, моментные и горизонтальные.

Ш Стены здания выполнены из панелей толщиной мм.

Ш Температура внутри производственного корпуса . Температура внутри бытовых помещений равна

Рис. 4.1. – План здания.

5.Сбор нагрузок, действующих на фундаменты

Вертикальная сосредоточенная нагрузка N H , передающаяся от колонны на фундамент, подсчитывается как произведение заданной единичной нагрузки соответствующего пролета на грузовую площадь покрытия (или перекрытия), приходящуюся на рассматриваемую колонну.

В единичные значения нагрузок включены: собственный вес всех конструкций покрытия (перекрытия), собственный вес колонны, снеговая, крановая и другие виды временных нагрузок.

Вертикальная сосредоточенная нагрузка от колонны считается приложенной в центре поперечного сечения колонны. Кроме вертикальной нагрузки от колонн, на которые опираются элементы покрытия или перекрытий, на фундаменты передаются моменты M H и горизонтальные силы Q H , действующие в плоскости поперечника здания.

Горизонтальные силы (Q H ) считаются приложенными в уровне обреза фундаментов. Направление действия моментов и горизонтальных сил в плоскости поперечника здания может быть принято для внутренних колонн любым, для наружных колонн вовнутрь помещения.

Нагрузки от собственного веса стен подсчитываются как произведение веса одного квадратного метра вертикальной поверхности стены на грузовую площадь, приходящуюся на фундамент.

Вес стеновых панелей принимается равным 3 кПа (кН/м 2 ) их вертикальной поверхности. В подсчете нагрузок от стен должны быть учтены коэффициенты уменьшения их веса за счет оконных и дверных проемов. Они принимаются для наружных стен цехов промышленных зданий К = 0.5; для бытовых помещений К = 0.6.

Таким образом, учитывая вышесказанное, можем подсчитать нормативные и расчетные нагрузки.

Нормативные нагрузки приведены в таблице 4.1.и

Источник: revolution.allbest.ru